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Abstract

An understanding of hydrological processes is vital for the sustainable management
of groundwater resources, especially in areas where an aquifer interacts with surface
water systems or where aquifer-interconnectivity occurs. This is particularly important
in areas that are subjected to frequent drought/flood cycles, such as the Cressbrook5

Creek catchment in southeast Queensland, Australia. In order to understand the hy-
drological response to flooding and to identify inter-aquifer connectivity, multiple iso-
topes (δ2H, δ18O, 87Sr/86Sr, 3H and 14C) were used in this study in conjunction with
a comprehensive hydrochemical assessment, based on data collected six months af-
ter severe flooding in 2011. The depleted stable isotope (δ2H and δ18O) signatures10

of the flood-generating rainfall were evident in surface water samples, indicating that
these extreme events were a major source of recharge to the dam in the catchment
headlands. Furthermore, stable isotopes confirmed that the flood generated significant
recharge to the alluvium in the lower part of the catchment, particularly in areas where
interactions between surface waters and groundwater were identified and where diffuse15

aquifer recharge is normally limited by a thick and relatively impermeable unsaturated
zone. However, in the upper parts of the catchment where recharge generally occurs
more rapidly due to the dominance of coarse-grained sediments in the unsaturated
zone, the stable isotope signature of groundwater resembles the longer-term average
rainfall values, highlighting that recharge was sourced from smaller rainfall events that20

occurred subsequent to the flood. Interactions between the bedrock aquifers and the
alluvium were identified at several sites in the lower part of the catchment based on
87Sr/86Sr ratios, and supported by the hydrochemical assessment, which included the
modelling of evaporation trends and saturation indices. The integrated approach used
in this study facilitated the identification of hydrological processes over different spa-25

tial and temporal scales, and the method can be applied to other complex geological
settings with variable climatic conditions.
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1 Introduction

Alluvial aquifers are natural reservoirs of groundwater, buffering baseflow in river sys-
tems and providing a reliable water supply during drier climatic phases (Winter et al.,
1998). Moreover, interactions between alluvial aquifers and their connected streams
are essential for the maintenance of healthy surface water and groundwater ecosys-5

tems (Boulton et al., 1998, 2010; Hancock et al., 2005; Anibas et al., 2012). Sustain-
able management of these alluvial aquifers is critical, but to enable this, a good under-
standing of recharge processes and the different sources and spatial variability of this
recharge is required (Hrachowitz et al., 2011; Dogramaci et al., 2012).

Groundwater recharge rates are often reported as being constant with time, but10

recharge can be episodic and reliant on large rainfall events (e.g. Flint et al., 2012).
This is particularly the case in alluvial aquifers where total recharge is often dominated
by flood-related influxes (e.g. Workman and Serrano, 1999). In these alluvial systems,
recharge rates are commonly elevated during floods, as a result of: (1) the enhanced
permeability of the creek-bed during the flood, due to scouring of the clogging layer15

by high velocity flows (e.g. Cendón et al., 2010; Simpson and Meixner, 2012); (2) the
enlarged pathway between surface- and groundwater, due to the increased width of
the creek and the saturated zone beneath it (e.g. Lange, 2005); and (3) the increased
head gradient between the creek and the stream (e.g. Rushton and Tomlinson, 1979).
Owing to this reliance on infrequent flooding and large rainfall events, alluvial aquifers20

are likely to be severely impacted by the predicted changes in climatic patterns, such
as the projected increased frequency and severity of droughts and floods (Parry et al.,
2007). This forecasted climate change will impact on river flows (Arnell and Gosling,
2013) and groundwater recharge processes (Green et al., 2011; Barron et al., 2012;
Dawes et al., 2012). This is particularly relevant for alluvial systems which are con-25

nected to ephemeral or intermittent streams, as interactions between these streams
and the alluvial aquifers are highly dependent on antecedent rainfalls (Hughes et al.,
2011).
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The study area is a small subtropical catchment in southeast Queensland, Aus-
tralia, which was subject to severe climate extremes in recent years, including an ex-
tended drought from the late 1990s through to approximately 2009, followed by heavy
rains, which culminated in a 1 % annual exceedance probability (AEP) flood in Jan-
uary 2011 (Babister and Retallick, 2011). This event provided a unique opportunity to5

study groundwater recharge processes that result from episodic flooding.
Seepage to the alluvium from the underlying bedrock aquifers is potentially an im-

portant source of recharge for the alluvium, but this process has not been verified. The
influx of poor quality groundwater, which is often associated with bedrock aquifers, may
negatively impact on the water-quality of the alluvial aquifer. Therefore, it is important10

to identify and monitor areas where bedrock seepage occurs.
The objective of this study is to demonstrate how multiple environmental isotopes

(δ2H, δ18O, 87Sr/86Sr, 3H and 14C) in combination with a comprehensive hydrochem-
ical assessment can be applied to: (1) assess the significance of floods as a ma-
jor recharge source; (2) identify recharge processes and connectivity between sur-15

face water and groundwater; and (3) identify areas where the alluvium is recharged
by the underlying highly diverse bedrock (inter-aquifer connectivity). Multiple isotopes
are increasingly being used to identify inter-aquifer connectivity (e.g. Dogramaci and
Herczeg, 2002; Cartwright et al., 2010a, 2012; Costelloe et al., 2012; Raiber et al.,
2009); nevertheless, studies of this kind are still challenging due to the complexity of20

the hydrochemical interactions that result from inter-aquifer groundwater flows.
Many studies have used surface- and groundwater compositions (i.e. isotopes, and

major and minor ions) to report on the connection between streams and alluvial ground-
water (e.g. Soulsby, 2007; Barrett et al., 1999; Kirchner et al., 2010; Mandal et al.,
2011; Morgenstern et al., 2010; Siwek et al., 2011; Négrel and Petelet-Giraud, 2005).25

However, studies which focus on the connectivity between alluvial aquifers and inter-
mittent or ephemeral streams (e.g. Kumar et al., 2009; Vanderzalm et al., 2011), or
report specifically on the effects of episodic groundwater recharge from flooding (e.g.
Cartwright et al., 2010b; Cendón et al., 2010; Simpson et al., 2013) are less common,
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even though these events are vital for the maintenance of groundwater quality and the
replenishment of groundwater storage. The outcomes from this study will be important
for the management of the alluvial groundwater resources of the study area and for
understanding flood-related processes in similar alluvial settings.

2 Hydrogeological setting5

The Cressbrook Creek catchment covers an area of approximately 200 km2 in south-
east Queensland, Australia. The area considered for this study extends from the Cress-
brook Dam in the headwaters to the confluence with the Brisbane River in the north-
east; it excludes the area up-gradient of Cressbrook Dam, which is a drinking water
supply dam for the Toowoomba City Council (Fig. 1). The topographically elevated ar-10

eas in the southwest of the catchment (ranging from 220 to 520 m Australian Height
Datum, AHD) are forested and mostly undeveloped, whereas alluvial plains along the
drainage system host rich farm land (> 90 % of the total alluvium by area), particularly
in the lower part of the catchment to the northeast (approximately 70 to 150 m AHD).
In this part of the catchment, irrigators use up to 3 GL of alluvial groundwater annually15

(DNRM, 2012), but groundwater abstraction is often restricted due to low groundwater
levels. With the construction of Cressbrook Dam in 1983, flow in Cressbrook Creek
was further reduced, resulting in lower groundwater levels. While water was initially
released from the dam to recharge the alluvium, releases were controversially phased
out in the late 1990s due to drought-induced water shortages.20

In this study, the catchment has been arbitrarily divided into four regions for ease of
discussion: the Catchment Headwaters, the Upper Catchment, the Mid Catchment and
the Lower Catchment (Fig. 2).
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2.1 Climate and surface water drainage

Southeast Queensland is a subtropical region with hot, humid summers and dry, mild
winters. The average annual rainfall at Toogoolawah in the lower part of the catch-
ment (Fig. 3) is 847 mm, although total annual rainfall can be highly variable, ranging
from 366 to 1418 mm between 1909 and 2011 (Station number 040205; BOM, 2012).5

However, even in wet years the infiltration of rainfall is limited by high evapotranspira-
tion rates, with mean annual pan evaporation rates of 1809 mm measured at Gatton
(Fig. 1), located about 25 km to the south of the study area (Harms and Pointon, 1999).

This climatic variability has been particularly evident in recent years, when below
average rainfall from 2000 to 2009 resulted in very low creek flow, especially from10

mid-2006 until early 2008 when flow in the creek ceased completely (Fig. 4). Due
to that extended drought, water levels at Cressbrook Dam in the headwaters of the
catchment (Fig. 2) did not reach the overflow in the period between 1999 and early
2011, and there was no flow from the dam to the creek. Despite the lack of outflow
from the dam, intermittent flow was recorded in Cressbrook Creek during this period15

of time (Fig. 4), indicating that the creek was recharged by both overland and ground-
water contributions along its course. The period of drought was then followed by two
wet years (2010 and 2011), culminating in significant flooding in January 2011, ap-
proximately five months prior to the sampling conducted during this study. As a re-
sult of this flooding, Cressbrook Dam reached the overflow and discharged to Cress-20

brook Creek until 24 June 2011. During surface water sampling (7–8 June 2011), ap-
proximately 0.5 m3 s−1 was discharging from Cressbrook Dam (Toowoomba Regional
Council, 2012) and Cressbrook Creek was flowing at approximately 0.7 m3 s−1 at CC3
(Fig. 3; DNRM, 2013), indicating that the majority of flow in Cressbrook Creek was
probably derived from the dam during this period.25

Groundwater hydrographs show that during the peak of the drought in 2008, ground-
water levels had dropped to approximately 4 to 5 m below the base of the creek in
the Lower Catchment. Additionally, the groundwater gradient in the Lower Catchment
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indicated that the creek was losing during this drought period. However, groundwater
levels recovered following the flooding and heavy rain in 2010 to 2011. Subsequent to
the flood, the groundwater gradient reversed and Cressbrook Creek became a gain-
ing stream in the Mid to Lower Catchment (Fig. 3), suggesting that groundwater gra-
dients between the alluvial aquifer and stream are dynamic and dependent on the5

antecedent rainfall conditions. However, it is apparent that the alluvium receives sub-
stantial recharge from Cressbrook Creek in the Mid to Lower Catchment (King et al.,
2014).

2.2 Geology

2.2.1 Bedrock10

The alluvial aquifer system of Cressbrook Creek overlies bedrock of variable geology,
with volcanic rocks, metamorphic rocks and granodiorite prominent in the upper part
of the catchment (Figs. 2 and 3). Basaltic rocks are particularly prominent in the Upper
Catchment, whereas the bedrock in the Mid to Lower Catchment is composed mainly
of the Mesozoic sedimentary rocks of the Esk Formation. Primary porosities of these15

bedrock units are generally low, but permeabilities are enhanced in some regions by
weathering of granodiorites and fracturing in other rocks (GSQ and IWSC, 1973).

The Esk Formation underlies many of the alluvial sampling sites in the Mid to Lower
Catchment (Fig. 3), and has a broad range of sedimentary strata and grain sizes
(Cranfield et al., 2001). Geological borehole logs (DNRM, 2012) confirm that this for-20

mation is very heterogeneous, with clayey sandstones, feldspathic sandstones, shale
and basalt, all recorded at shallow depths within the Mid to Lower Catchment.

2.2.2 Alluvium

The alluvial system at Cressbrook Creek is characterised by fining-upwards se-
quences, which typically consist of basal sands and gravels, overlain by silts and clays.25
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Minor carbonate veins have been identified within granodiorites (Zahawi, 1972). How-
ever, their contribution to the alluvium, if any, has not been detected in X-ray diffraction
(XRD) analyses of sediments collected from Lake Wivenhoe, which is located down-
stream of the confluence with the Cressbrook Creek and the Brisbane River (Fig. 1).
In addition, no carbonate was detected in the weathered granodiorite profile (Douglas5

et al., 2007) as any potential carbonate particles are likely to dissolve. This apparent
lack of carbonates implies that radiocarbon dating of alluvial groundwaters is unlikely
to be significantly affected by interactions with carbonate minerals.

King et al. (2014) describe this complex, multi-layered alluvial system as a two-layer
system based on sediment grain size assessment. The basal coarse-grained layer con-10

sists mostly of sands and gravels, whereas the upper low permeability layer is primarily
composed of fine-grained sediments such as silts and clays. This fining upwards se-
quence is characteristic of many alluvial systems in eastern Australia (e.g. Cendón
et al., 2010; Cox et al., 2013), largely due to diminishing surface water flows in the
late Quaternary (Knighton and Nanson, 2000; Maroulis et al., 2007; Nanson et al.,15

2008). The thickness of the low permeability layer increases with distance downstream,
whereas the thickness of the basal high permeability layer decreases down-gradient;
these variations suggest that there is probably less recharge in the lower parts of the
catchment compared to the upper parts.

3 Water sampling and analytical methods20

Surface and groundwater samples were collected in June and September 2011 from
eight surface water sites, 18 bores screened in the alluvial aquifer and eight bedrock
bores. In addition, two samples were collected from bores where the screened intervals
(slotted section of casing) encompass both the lower 1–2 m of the alluvium and the
top 1–2 m of the bedrock (B92 and B158); these sites are categorised as “bedrock25

sites” (Fig. 3). Alluvial boreholes are shallow and mostly screened near the base of
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the alluvium, whereas bedrock boreholes are generally deep, except for three shallow
bores screened in the Esk Formation (Table 1).

Prior to sampling, three well volumes were pumped from the boreholes and the spe-
cific (electrical) conductance (SC), temperature, redox potential (Eh) and pH were mon-
itored using a flow cell to ensure that these parameters had stabilised prior to sampling.5

Field measurements were taken with a TPS 90 FL field meter, which was calibrated in
accordance with the manufacturer’s specifications prior to use.

3.1 Major and minor ions

Samples for major and minor cations (Na, K, Ca, Mg, Fe, Mn and Sr) were collected
in acid-cleaned 125 mL HDPE (High Density Polyethylene) bottles and acidified to ap-10

proximately pH 2 using HNO3. Cations were analysed at Queensland University of
Technology (QUT) by inductively coupled plasma optical emission spectroscopy (ICP-
OES). Samples for major anion analyses (Cl, NO3, SO4 and HCO3) were collected in
pre-rinsed 250 mL HDPE bottles, with no further treatment until analysis, which was
performed at QUT using an automated discrete analyser (Seal AQ2), ion chromatog-15

raphy (Dionex ICS-2100) and by manual titration for alkalinity.

3.2 Isotopes

Stable isotopes (δ2H and δ18O) of groundwater and surface water were analysed us-
ing a Los Gatos Liquid Water Isotope Analyzer at the University of New South Wales
(after Lis et al., 2008). The δ13C of dissolved inorganic carbon (DIC) was analysed at20

GNS Science (New Zealand). Strontium isotopes were analysed using multi collector-
inductively coupled plasma mass spectrometry (MC-ICP-MS) at the University of Mel-
bourne following the methods described by Hagedorn et al. (2011). The internal preci-
sion (2se) and external precision (2sd) for the MC-ICP-MS procedure is ∼ ±0.000020
and ±0.000040, respectively. Tritium and radiocarbon were analysed at the Australian25

Nuclear Science and Technology Organisation (ANSTO). For 14C analysis, the total
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DIC was converted to CO2 using a custom built extraction line. The CO2 sample was
then graphitised, graphite targets were analysed by AMS at ANSTO’s STAR acceler-
ator following procedures of Fink et al. (2004). Conventional radiocarbon ages were
reported as percentage Modern Carbon (pMC) with 1σ errors of less than 0.37 pMC
(Stuiver and Polach, 1977). Samples for 3H analysis were distilled and electrolytically5

enriched, and subsequently analysed using a liquid scintillation counter. Results are
reported in tritium units (TU) with an uncertainty of ±0.04 to 0.08 TU and quantification
limits of 0.13 TU.

Rainfall from Brisbane Airport was collected as a monthly composite of daily
rain gauge samples, following the technical procedure recommended for GNIP sam-10

pling (http://www-naweb.iaea.org/napc/ih/documents/userupdate/sampling.pdf). Sam-
ples from June to October 2010 were analysed by Isotope Ratio Mass Spectrometry
at the CSIRO Land and Water Isotope Lab (Adelaide) (reported accuracy of ±1.0 and
±0.15 ‰ for δ2H and δ18O, respectively) or Alberta Innovates Technology Futures Iso-
tope Hydrology and Geochemistry Lab (reported accuracy of ±1.0, ±0.2 ‰ for δ2H and15

δ18O, respectively). Samples from November 2010 to June 2011 were analysed at the
ANSTO Institute for Environmental Research using a Cavity Ring-Down Spectroscopy
method on a Picarro L2120-I Water Analyser (reported accuracy of ±1.0 and ±0.2 ‰
for δ2H and δ18O, respectively).

3.3 Geochemical calculations20

Evaporation curves and saturation state calculations were performed using PHREEQC
(Parkhurst and Appelo, 1999). Evaporation curves were calculated under the assump-
tion that calcite, dolomite and gypsum precipitate when they reach saturation and are
not re-dissolved. Mineral stability diagrams were calculated after Drever (1997), using
groundwater analyses collected as part of this study.25
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4 Results

4.1 Hydrochemistry

Surface waters are generally fresh (SC< 850 µS cm−1; Table 2) with similar proportions
of major cations (Na, Ca and Mg; Fig. 5). The major anions are Cl and HCO3 and the
relative proportion of Cl increases with distance downstream. Alluvial groundwaters are5

fresh to brackish with no clear dominant major cations and low SO4 concentrations;
the Cl/HCO3 ratio tends to increase with salinity. The hydrochemistry of the bedrock
groundwaters is highly variable, although the Na/Cl ratio is generally higher than the
alluvial waters (Fig. 6).

4.2 Mineralogy and geochemical interactions with groundwater10

To assess the interaction of groundwater with minerals in the soil zone and the aquifer
matrix, groundwater hydrochemical data was incorporated into silicate stability dia-
grams (Fig. 7) to determine the relative stability of common silicate minerals in equi-
librium with groundwater collected from major bedrock aquifers (Esk Formation and
the Eskdale Igneous Complex) and the alluvium (Fig. 3). The silicate stability diagrams15

show that kaolinite is usually in equilibrium with groundwaters from the Cressbrook
Creek catchment, except for Ca-rich minerals, which are generally in equilibrium with
smectite.

4.3 Stable isotopes (δ2H and δ18O)

Isotopic signatures for groundwater and surface water are compared to rainfall data col-20

lected from Brisbane Airport and Toowoomba (Fig. 8) between May 2008 and May 2010
(Crosbie et al., 2012), and new data collected by ANSTO between June 2010 and
June 2011 (Table 4). Rainfall collected from the Brisbane Airport (Fig. 1), located ap-
proximately 60 km east of the study site, is isotopically similar to rainfall collected from
Toowoomba, which is located approximately 20 km to the southwest (Fig. 8a; Crosbie25
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et al., 2012). This suggests that there is limited spatial variation in the study region, and
that data from Brisbane and Toowoomba are representative of the Cressbrook Creek
catchment. The Brisbane Meteoric Water Line (MWL) has a slope of 7.9 (Hughes and
Crawford, 2012), which is close to the global average of 8.2 (Rozanski et al., 1993).
However, the deuterium excess (d ) of 13.1 ‰ is higher than the global average of about5

10 ‰, as observed in other coastal eastern Australian sites (Cendón et al., 2014), prob-
ably due to the influence of convective rainfall (Liu et al., 2010).

During the 12 months prior to the June 2011 sampling campaign, rainfall stable iso-
tope signatures were depleted compared to previous rainfall events, particularly during,
and immediately prior to, the flooding in January 2011. Rainfall from December 201010

and January 2011 (316 and 424 mm respectively; BOM, 2012) was particularly de-
pleted in δ2H (−30.2 and −27.8, respectively) and δ18O (−5.34 and −5.13, respec-
tively; Table 4).

4.4 Strontium isotopes

No measurements of the 87Sr/86Sr ratios of rainwater were conducted for the study15

area, and as a consequence, the 87Sr/86Sr ratios of rainfall used in this study (Fig. 9a)
are based on data from elsewhere in Australia. The 87Sr/86Sr ratios of rainfall are typ-
ically similar to modern seawater (0.7092; Dia et al., 1992) near the coast, but they
become progressively more radiogenic inland due to the addition of atmospheric dust.
Strontium isotope measurements of rainfall from Hamilton, Casterton and Willaura in20

Victoria (south-eastern Australia), which are located approximately 60, 70 and 100 km
from the coast respectively, were 0.7094, 0.7097 and 0.7107 (Raiber et al., 2009). The
Cressbrook Creek catchment is approximately 70 km from the eastern coast of Aus-
tralia (Fig. 1). Assuming a similar increase of the strontium isotope ratios of rainfall
with increasing distance from the coast, the 87Sr/86Sr ratios in the Cressbrook Creek25

catchment may be in a similar range to those reported by Raiber et al. (2009), although
it is acknowledged that local factors and temporal variability can have a substantial in-
fluence. Strontium isotope ratios of surface and groundwaters in the Cressbrook Creek
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catchment range from 0.7042 to 0.7119 (Fig. 9), although most samples are within
a narrower range of 0.7051 to 0.7078.

4.5 Groundwater residence times

Tritium and 14C activities have been used to qualitatively assess groundwater residence
times in the alluvium and in the surface water of Cressbrook Creek. Tritium is partic-5

ularly useful for groundwater studies in the Southern Hemisphere, where 3H activities
of rainfall have been about 2–3 TU for over 20 years (Morgenstern et al., 2010; Tadros
et al., 2014). The 3H activity of rainfall is no longer affected by interference from bomb
tritium, but is instead controlled by natural cosmogenic production, allowing for a more
accurate interpretation of groundwater residence times using a single 3H measurement10

(Morgenstern and Daughney, 2012).
The 14C activities of DIC can also provide insight into groundwater residence times

and recharge processes. However, the interpretation of 14C ages is often difficult,
because 14C activities can be altered by geochemical processes that occur in the
unsaturated- and saturated zone (Plummer and Glynn, 2013). Nuclear weapons testing15

further complicated interpretation of 14C ages in modern samples by increasing atmo-
spheric 14C activities in the 1950s. The radiocarbon activity of alluvial groundwater in
Cressbrook Creek catchment ranges from 81.12 to 104.22 pMC (Table 3). Conventional
radiocarbon ages calculated from these data range from modern to 1650 years BP. Two
samples (B37 and B83) have modern uncorrected 14C ages, which correlate well with20

their relatively high 3H activities of 1.08 and 1.15 tritium units (TU), respectively. This
confirms that there is a substantial modern groundwater component contained in these
groundwaters.

The uncorrected 14C ages of the samples collected from B57, B36, B18 and B51 are
55, 345, 1025 and 1680 years BP, respectively. However, it should be noted that the 14C25

ages have not been corrected for interactions with carbonate minerals, and the δ13CDIC
for the samples collected from B18 and B51 are −4.4 and −4.9 ‰, respectively (Ta-
ble 3). This enriched δ13CDIC composition is indicative of carbonate mineral dissolution
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under closed CO2 conditions (i.e. below the water table) (Clark and Fritz, 1997). Tritium
analyses of the same samples (B57, B36, B18 and B51) indicate that these samples
contain a modern component, with values of 1.02, 0.70, 0.50 and 0.13 TU, respectively.

5 Discussion

5.1 Origin of solutes and hydrochemical evolution5

5.1.1 Hydrochemical facies

Surface and groundwaters in the upper part of the catchment are generally fresh
(Fig. 3), whereas salinities are moderately higher in the lower catchment. Five hydro-
chemical facies have been identified based on major ions proportions (Fig. 5). Hydro-
chemical Facies 1 to 3 contain relatively fresh water samples (Table 5) and samples10

assigned to these facies have similar concentrations of Ca, Mg and Na (no dominant
cation), and low SO4 concentrations; therefore, these three groups are mainly distin-
guished by the relative proportions of Cl to HCO3. Hydrochemical Facies 1 is mostly
composed of fresh bedrock groundwater samples, but interestingly, it also includes
one surface water sample (OCk). This group is characterised by HCO3-dominated wa-15

ter with relatively high Si concentrations and low NO3 (Table 5). Hydrochemical Facies
2 and 3 are composed of fresh water samples with slightly higher Cl concentrations
than samples assigned to Hydrochemical Facies 1. Hydrochemical Facies 4 and 5
both contain brackish groundwaters with Cl as the dominant anion, but the samples in
Hydrochemical Facies 5 have higher Na and less NO3 compared to those in Facies 420

(Figs. 5 and 6 and Table 5).

5.1.2 Bedrock groundwaters

Bedrock groundwater samples have diverse hydrochemical compositions (Facies 1, 2
and 5; Table 2) and 87Sr/86Sr ratios (Fig. 9), reflecting the wide range of bedrock types
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in the study area including granodiorite, basalt, sandstone and shale. Hydrochemical
end-members are highly variable due to superimposed processes such as evaporation
of water from the unsaturated zone prior to groundwater recharge, transpiration, and
mixing from multiple sources. The dominance of HCO3 for bedrock samples in the
Upper Catchment (Hydrochemical Facies 1) suggests that there are several potential5

processes that contribute towards the observed patterns of major ion concentrations,
including carbonate dissolution, oxidation of organic matter, and silicate weathering.
The latter can be assessed using 87Sr/86Sr ratios and silicate stability diagrams.

Groundwaters from the Esk Formation (B229, B103 and B92; Fig. 3) typically have
low 87Sr/86Sr ratios (0.7042 to 0.7062), even though the weathered soils from this10

formation are comparatively radiogenic (Fig. 9a) with values ranging from 0.7070 to
0.7115 and a mean of 0.7090 (Douglas et al., 2007). This suggests that 87Sr/86Sr ra-
tios of groundwaters from the Esk Formation do not reflect the weathered whole-rock
signature, but are instead probably controlled by weathering of plagioclase. Weather-
ing of anorthite (Ca-rich plagioclase) releases 86Sr (substituted for Ca) into groundwa-15

ter, but very little 87Sr is released (McNutt, 2000), resulting in groundwaters with low
87Sr/86Sr ratios. Many other studies have also reported similar observations where
groundwater 87Sr/86Sr ratios are lower than the whole rock 87Sr/86Sr ratios, attributed
to the dominant influence of plagioclase dissolution (e.g. Fritz et al., 1992; Richards
et al., 1992; Made and Fritz, 1989). This plagioclase dissolution process is supported20

by geochemical evidence, which shows that Esk Formation soils are rich in smectite
(Douglas et al., 2007), and that Ca-rich minerals of the Esk Formation, such as anor-
thite, are likely to weather to smectite (Fig. 7), whereas minerals that are rich in K,
Na and Mg are likely to weather to kaolinite. Therefore, it appears as though silicate
weathering is a significant process affecting the major ion concentration of the bedrock25

groundwaters, particularly in the Esk Formation.
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5.1.3 Alluvial groundwaters

Alluvial groundwater evolution is marked by an increase in salinity (Fig. 5), longer
groundwater residence times, a decreasing 87Sr/86Sr ratio (Fig. 9b) and higher
Cl/HCO3 ratios (Fig. 5). The more evolved groundwaters in Hydrochemical Facies 4
and 5 have probably been subjected to higher degrees of evapotranspiration. Evapo-5

ration processes are evident from stable isotopes measurements, which show that all
ground- and surface water samples collected during this study are displaced signifi-
cantly to the right of the Brisbane and Toowoomba MWL (Fig. 8a). This is in agreement
with pan evaporation rates that far exceed the average annual rainfall in the catchment
(Sect. 2.1).10

In addition to evaporation, transpiration also appears to be an important control of
groundwater salinity in some areas, as documented by elevated Cl and stable isotope
signatures that do not show any substantial influence of evaporation (Fig. 8b). However,
Mg and Ca concentrations of the samples from Hydrochemical Facies 4 are higher than
would be expected from evaporation, based on modelled evaporation curves from fresh15

water samples from the Upper and Lower Catchment (Fig. 6).
Similarly, the Na concentrations are lower than expected from the evaporation curve,

suggesting that the groundwater composition of samples assigned to Hydrochemical
Facies 4 have been influenced by interactions with aquifer materials. As carbonate
rocks are absent in the alluvium of this catchment, weathering of silicate minerals ap-20

pears to be the most likely source of dissolved ions. This is also supported by a moder-
ate correlation between 3H and the saturation indices (SI) of albite (R2 = 0.45; Fig. 9d),
compared to the weak correlation between 3H and calcite SI (R2 = 0.24; Fig. 9e). Fur-
thermore, many of these more evolved waters have Ca/HCO3 ratios (and Mg/HCO3
ratios) that are higher than the 1 : 2 molar ratio that could be expected from the disso-25

lution of carbonates alone (Fig. 6; Appelo and Postma, 2005).
It is likely that this increase in Ca and Mg is augmented by dissolution of mafic min-

erals such as olivine, pyroxene and anorthite, which are commonly present in basaltic
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rocks such as those in the Mid to Upper Catchment (Palaeozoic rocks; Fig. 3). Alluvial
sediments probably contain detrital material that was eroded off these basalts, provid-
ing a source of Ca and Mg for alluvial groundwaters and surface waters in the lower
part of the catchment. This is supported by XRD analyses, which show that there are
significant amounts of smectite in weathered sediments sampled from Lake Wiven-5

hoe (Fig. 1; Douglas et al., 2007), and silicate stability diagrams (Fig. 7) demonstrate
that the smectite is probably the result of the weathering of Ca-rich minerals such as
anorthite.

In contrast to Hydrochemical Facies 4, the samples from Hydrochemical Facies 5
have followed a different evolutionary pathway (Fig. 5): groundwaters that are members10

of Hydrochemical Facies 5 generally have longer residence times (Table 5), higher Na
concentrations (Fig. 5) and its groundwater evolution more closely follows an evap-
orative trend (Fig. 6). Nevertheless, the evaporation curve (Fig. 6) indicates that Ca
and Mg concentrations are still higher than expected if evaporation alone was the con-
trolling factor, suggesting that the dissolution of silicates is also an important process15

influencing the chemistry of these waters.

5.2 Hydrological processes, recharge and the impact of flooding

5.2.1 Cressbrook Creek and Cressbrook Dam

Surface water samples from Cressbrook Creek follow an evaporative trend line that in-
tersects the meteoric waterline near the flood-generating rainfall (Fig. 8a). Cressbrook20

Dam was overflowing into Cressbrook Creek at the time of sampling (Toowoomba Re-
gional Council, 2012), and water from the dam appears to be dominated by depleted
heavy rainfall from December 2010 and January 2011. This is not surprising, as the
storage volume of Cressbrook Dam was at record low levels (7.5 % of total capac-
ity) in February 2010 (Toowoomba Regional Council, 2014). In addition, rainfall in the25

Catchment Headwaters and at Cressbrook Dam may be further depleted due to the
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altitude effect, as the dam is approximately 250 m AHD and the surrounding hills reach
elevations in excess of 500 m AHD.

5.2.2 Upper catchment

In the Upper Catchment, recharge to the alluvium is dominated by diffuse infiltration
of rainfall rather than channel leakage (Fig. 10a and b). This is supported by evidence5

that indicates that the stream is gaining in this part of the catchment, including field
observations of groundwater discharge into the stream in the Upper Catchment, the
sustained flow in Cressbrook Creek during years when there was no discharge from
Cressbrook Dam and the increase in discharge volume between Cressbrook Dam and
CC3 (Fig. 3) at the time of sampling (Sect. 2.1). Groundwater is recharged rapidly in10

this part of the catchment, based on the low salinity (Fig. 3) and relatively high 3H
activities (Table 3) of groundwaters collected from this region.

Groundwater major ions and stable isotopes from samples collected near the con-
fluence of Cressbrook Creek and Kipper Creek are similar to the surface water sam-
ple collected from Kipper Creek (KC1; Fig. 3), suggesting that Kipper Creek receives15

baseflow from the alluvium in the vicinity of KC1. As there was no flow in Kipper Creek
in the Catchment Headwaters at the time of sampling, the creek must have received
groundwater baseflow in the Upper Catchment (i.e. near KC1). The stable isotope sig-
nature of groundwaters collected from the Upper Catchment and surface water from
Kipper Creek is intermediate to the evaporation trends that originate from the flood-20

generating rainfall and the longer-term weighted average rainfall value. This suggests
that recharge is sourced from the flood and from smaller rainfall events that occurred
subsequent to the flood. However, the sample collected from Cressbrook Creek in the
Upper Catchment has a more depleted stable isotope signature than other surface wa-
ters or groundwater samples from the Upper Catchment, probably because water in25

Cressbrook Creek has a high proportion of isotopically depleted flood runoff and quick
flow from Cressbrook Dam (Sect. 5.2.1).
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The sample collected from Oaky Creek (OCk; Fig. 3) is grouped in a different hy-
drochemical facies to other surface water samples. This sample has been assigned
to Hydrochemical Facies 1, together with bedrock samples collected from the Upper
Catchment, including a sample collected from the granodiorite foothills in the Oaky
Creek sub-catchment (B104; Fig. 3). The bedrock appears to have a major impact on5

the chemical composition of the water in Oaky Creek, probably because the alluvial
aquifer is thin and narrow in the Oaky Creek sub-catchment and because the upper
layers of granodiorite are highly weathered, and therefore comparatively permeable.
This permeable weathered granodiorite probably provides baseflow to Oaky Creek.

5.2.3 Mid to lower catchment10

Most groundwaters from the lower part of the catchment also follow the evaporative
trend that intersects the meteoric water line near the flood-generating rainfall of De-
cember 2010 and January 2011, indicating that groundwater is recharged rapidly by
channel leakage and/or that the flood generated substantially more recharge than other
smaller rainfall events. In the Lower Catchment, fresh groundwaters with short resi-15

dence times, such as those contained in Hydrochemical Facies 2 and 3, are probably
recharged by surface waters (Fig. 10c and d). These sites are generally located close
to the creek and it appears as though groundwater quality is significantly improved due
to interactions with surface water in this part of the catchment, confirming the obser-
vation from King et al. (2014). These groundwater-surface water interactions also ap-20

pear to affect surface water compositions, as is evident from observed changes in the
chemical composition of Cressbrook Creek with distance downstream. This includes
an: (1) an increase in total dissolved salts (Fig. 3); (2) an increase in the apparent
water age, as indicated by the 3H activities at CC1 (Upper Catchment; 1.60 TU) and
CC6 (Lower Catchment; 1.44 TU; Table 3); (3) enrichment of stable isotopes (δ2H and25

δ18O; Fig. 8b); and (4) a decrease in the 87Sr/86Sr ratios (Fig. 9a).
The more evolved groundwater samples from the Mid and Lower Catchment (Hydro-

chemical Facies 4 and 5) were generally collected from alluvial wells that are located
3729
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further away from the creeks (Fig. 3) and/or where the unsaturated zone is thick (e.g.
> 10 m). These sites are also located in areas where the alluvium is less permeable,
suggesting that infiltrating rainfall from small rainfall events is subjected to a signifi-
cant degree of evapotranspiration processes during infiltration through the unsaturated
zone, and large rainfall events are probably required to generate groundwater recharge.5

Therefore, it is likely that these more evolved waters are predominately recharged dur-
ing high rainfall events, such as those associated with the flooding in January 2011.

5.3 Hydraulic connectivity between bedrock and alluvium

Tritium data show that alluvial groundwaters assigned to Hydrochemical Facies 5 have
relatively long residence times (B90, B18 and B51, Table 5). In particular, the low 3H10

activities from B18 and B51 (0.50 and 0.13 TU, respectively) indicate that older bedrock
groundwater could be interacting with the alluvium at these sites. Furthermore, the
sample collected from B158, which is screened in both the alluvium and the bedrock,
is also included in Hydrochemical Facies 5.

The sample from B90 has a stable isotope signature that indicates a substantial de-15

gree of evaporation (Fig. 8), whereas other alluvial samples assigned to Hydrochemi-
cal Facies 5 (B51 and B18) are isotopically more depleted. As previously mentioned,
alluvial groundwaters assigned to Hydrochemical Facies 5 were probably subjected
to significant amounts of evaporation. However, groundwater from sites B18 and B51
(Fig. 3) have a relatively depleted stable isotope signature considering their high Cl20

concentrations (Fig. 8), which suggests that these sites may have received seepage
from depleted bedrock groundwater. Furthermore, the groundwater sample from B18
has a radiogenic 87Sr/86Sr signature similar to groundwater sampled from the granodi-
orite, which forms the bedrock at this site, and sample B51 has a low 87Sr/86Sr ratio
similar to the Esk Formation samples (Fig. 9a). Also, unlike other samples analysed for25
14C, the 14C activities of these samples have probably been significantly affected by
dissolution of carbonate minerals under closed CO2 conditions. However, there is no
discrepancy between the 3H age and the 14C age of the samples collected from B83
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and B37 (14C age of samples collected from the remaining two samples, B57 and B36,
is discussed below) indicating that the 14C age of these samples has not been affected
by closed system dissolution of carbonate minerals. As the alluvium is composed pri-
marily of components derived from erosion of silicate rocks, it is unlikely to contain
significant amounts of carbonate. In contrast, fractures in the underlying bedrock are5

a likely source of carbonate minerals (Laycock, 1967; Zahawi, 1972).
Overall, the isotopic evidence (groundwater 14C, δ13C, stable isotopes and 87Sr/86Sr

ratios) confirms that the aquifer at sites B18 and B51 receives seepage from the under-
lying bedrock. Interestingly, the only other two samples with 87Sr/86Sr ratios below the
99 % confidence interval (Fig. 9a) are the samples from B36 and B57, which were also10

collected from monitoring bores overlying the Esk Formation. Furthermore, apart from
B18 and B51, they are the only other two samples with non-modern uncorrected 14C
ages, and they have relatively depleted stable isotope signatures, suggesting that the
alluvial aquifer at these sites has probably also received seepage from the underlying
bedrock aquifer. Moreover, there is a strong correlation (R2 = 0.94) between 3H and15
14C activities (Fig. 9c), which suggests that the samples from B57 and B36 have been
affected by similar hydrological processes (i.e. bedrock seepage) as the samples from
B51 and B18.

6 Conclusions

This study outlines the benefits of the simultaneous application of multiple environmen-20

tal isotopes (δ2H, δ18O, 87Sr/86Sr, 3H and 14C) in combination with a comprehensive
hydrochemical assessment. The aim was to study the influence of a flood on ground-
water recharge and to assess the hydrological connectivity of an alluvial aquifer system
with associated streams and underlying highly diverse bedrock aquifers. In particular,
this study also demonstrated the value of time-series rainfall stable isotope data for25

the identification of hydrological processes that result from flooding, such as aquifer
recharge and the generation of baseflow.
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The approach also highlights how silicate stability diagrams, theoretical evaporation
curves and saturation indices can be valuable tools to better understand hydrochem-
ical processes within the alluvium as well as inter-aquifer mixing processes, and the
results from the hydrochemical assessment could then be compared and contrasted
to the results of the isotope assessment. The use of these techniques applied to the5

Cressbrook Creek catchment showed that dissolution of silicate minerals and evapo-
transpiration are important controls of groundwater evolution. In the Upper Catchment,
rainfall is quickly recharged through relatively coarse-grained alluvial sediments. Con-
versely, rainwater infiltrates more slowly in the Mid and Lower Catchment, resulting in
longer residence times in the unsaturated zone and higher salinities, particularly in the10

flood-plain distal to Cressbrook Creek. In contrast, surface water leakage to the allu-
vial aquifer is an important mechanism for maintaining groundwater quality and for the
generation of recharge in the lower part of the catchment.

The flood-generating rainfall in 2011 was isotopically more depleted than the long-
term weighted average, and groundwater from the lower part of the catchment plots15

along an evaporative trend line that intersects the meteoric water line near this de-
pleted, flood-generating rainfall of December 2010 and January 2011. This confirmed
that the flood events of January 2011 generated significant recharge, whereas infiltrat-
ing water from smaller rainfall events is subject to evapotranspiration, especially in the
lower part of the catchment where the unsaturated zone is relatively thick and the per-20

meability is low. Recharge from episodic flooding is probably important in other similar
settings where low permeability sediments are incised by stream channels. Ground-
water in the Upper Catchment follows an evaporative trend initiated from rainfall that
is intermediate to the long-term weighted average rainfall and the “flood rainfall”. The
floods of 2011 also generated significant recharge in this part of the catchment. How-25

ever, as the evaporative trend is initiated from a more enriched rainfall signature (i.e.
closer to the long-term weighted average), it appears likely that smaller rainfall events
also generate groundwater recharge here, probably due to the more permeable and
thinner soil material in this part of the catchment.
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Hydraulic connectivity between the alluvium and the underlying bedrock was con-
firmed at several locations based on evidence from stable isotope data and 87Sr/86Sr
ratios, as well as from the assessment of radioisotopes (3H and 14C) and hydrochem-
istry. This connectivity is likely to be spatially and temporally variable.

The complementary use of multiple isotopes and hydrochemistry of rainfall, ground-5

water and surface water enabled an effective assessment of hydrological processes
throughout the catchment, including recharge of the alluvial deposits from surface wa-
ter flows and variable bedrock aquifers, recharge specifically from flood events and
an understanding of isotopic and hydrochemical parameters in the context of variable
climatic conditions.10
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Table 1. Geological description of bedrock hydrochemical sampling sites (DNRM, 2012).

ID DNRM Aquifer
Description

DNRM Aquifer
Interpretation

Inferred Aquifer Depth of well
(m below ground level)

B16 Conglomerate Esk Fm Esk Fm 10.0
B92 Alluvium (0.4 m)

Sandstone (2.6 m)
Alluvium
Esk Fm

Both alluvium and the Esk Fm 14.2

B158 Alluvium (2.0 m)
Sandstone (1.0 m)

Alluvium
Esk Fm

Both alluvium and the Esk Fm 13.6

B103 Sandstone Esk Fm Esk Fm 24.7
B229 No Record No Record Esk Fm > 50.0
B256 Basalt and shale No Record Pinecliff Fm 40.5
B546 Basalt No Record Pinecliff Fm 68.6
B104 Granite No Record Eskdale Igneous Complex 64.0
B251 Shale No Record Maronghi Creek Beds 49.5

Note: The screened (slotted) section is 3 m long at B92 and B158. The values in parentheses in column 2 represent the length of the screened
section that is encompassed by each geological material.
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Table 2a. Hydrochemical data for surface and groundwater samples from Cressbrook Creek
catchment.

Sampling
Site

Date Geology Depth to base of
casing (m)

HF facies pH SC
(µScm−1)

Eh
(mV)

Na
(mgL−1)

K
(mgL−1)

Mg
(mgL−1)

Ca
(mgL−1)

Mn
(mgL−1)

B157 15 Jun 2011 Alluvium 7.2 4 6.4 1145 80 57 11.1 28 67 0.58
B18 14 Jun 2011 Alluvium 9.5 5 6.7 4140 −55 460 2.1 141 194 1.20
B21 14 Jun 2011 Alluvium 13 2 6.7 720 −180 51 1.2 27 49 1.10
B33 14 Jun 2011 Alluvium 10.4 2 6.7 492 −21 40 1.3 15 27 0.81
B36 14 Jun 2011 Alluvium 15.2 3 6.3 651 42 39 1.8 20 42 0.23
B37 22 Jun 2011 Alluvium 9.4 4 7.2 4750 −330 360 22.0 321 630 0.31
B44 19 Sep 2011 Alluvium 12.8 3 7.0 708 35 51 0.6 29 55 0.02
B51 8 Jun 2011 Alluvium 13.7 5 6.7 5930 −60 690 1.6 228 231 0.05
B57 19 Sep 2011 Alluvium 14.7 4 6.8 1251 −160 73 0.8 55 110 0.06
B74 7 Jun 2011 Alluvium 7.9 2 6.6 587 45 44 1.9 26 35 0.04
B76 21 Jun 2011 Alluvium 8.0 2 6.6 369 −60 36 1.3 19 28 0.04
B82 15 Jun 2011 Alluvium 14 3 6.7 1110 170 70 1.1 38 66 0.55
B83 15 Jun 2011 Alluvium 9.5 4 6.3 1422 180 74 1.0 49 90 0.16
B89 8 Jun 2011 Alluvium 12.3 3 6.4 938 −25 50 1.3 41 66 0.61
B90 14 Jun 2011 Alluvium 9.4 5 6.5 1880 130 150 1.2 68 100 0.00
B91 21 Jun 2011 Alluvium 11.5 2 6.8 468 −60 47 1.8 22 35 0.89
B93 8 Jun 2011 Alluvium 16.5 3 6.4 1082 −5 65 1.9 42 67 2.10
B837 21 Jun 2011 Alluvium 15.8 3 6.5 454 26 37 0.9 26 40 0.00
B158 14 Jun 2011 Both Alluvium and Bedrock 13.6 5 6.4 2770 110 260 1.1 79 150 0.04
B92 15 Jun 2011 Both Alluvium and Bedrock 14.2 1 6.4 403 −47 29 1.5 10 18 0.36
B103 15 Jun 2011 Bedrock 24.7 5 6.5 13 750 −60 1350 3.4 555 650 0.58
B104 19 Sep 2011 Bedrock 64 1 7.3 437 210 42 1.5 17 43 0.00
B16 15 Jun 2011 Bedrock 10 2 7.0 614 −61 38 1.9 21 37 0.41
B229 21 Jun 2011 Bedrock > 50 1 7.4 787 −15 120 0.5 20 59 0.05
B251 16 Jun 2011 Bedrock 49.5 1 7.3 898 150 67 0.7 43 120 0.02
B256 21 Jun 2011 Bedrock 40.5 1 7.0 501 115 79 5.4 18 31 0.00
B546 21 Jun 2011 Bedrock 68.6 2 6.4 497 25 49 3.1 20 49 0.17
CC1 7 Jun 2011 Surface Water N/A 2 7.0 295 75 22 2.7 13 18 0.03
CC2 7 Jun 2011 Surface Water N/A 2 7.5 356 110 25 2.3 15 20 0.02
CC4 8 Jun 2011 Surface Water N/A 2 7.6 415 120 29 2.1 18 24 0.03
CC5 8 Jun 2011 Surface Water N/A 2 7.6 572 38 38 2.4 24 35 0.16
CC6 7 Jun 2011 Surface Water N/A 2 7.5 602 140 39 2.4 25 36 0.10
KC1 7 Jun 2011 Surface Water N/A 3 6.8 540 73 33 1.8 26 28 0.01
OCk 8 Jun 2011 Surface Water N/A 1 7.2 543 110 39 0.9 22 43 0.02
BR1 8 Jun 2011 Surface Water N/A 2 7.0 829 110 65 2.6 37 54 0.06
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Table 2b. Continued.

Sampling
Site

Date Geology Fe
(mgL−1)

Sr
(mgL−1)

Cl
(mgL−1)

SO4

(mgL−1)
HCO3

(mgL−1)
CO3

(mgL−1)
NO3-N
(mgL−1)

SiO2

(mgL−1)
%CBE

B157 15 Jun 2011 Alluvium 7.00 0.38 284 41.4 59.2 0.01 1.26 38.7 −8.6
B18 14 Jun 2011 Alluvium 5.30 1.11 1122 19.1 310.6 0.14 0.19 39.1 5.3
B21 14 Jun 2011 Alluvium 1.40 0.25 106 42.0 206.0 0.07 0.17 35.3 −2.9
B33 14 Jun 2011 Alluvium 0.45 0.16 86 10.8 140.3 0.05 0.10 27.2 −6.2
B36 14 Jun 2011 Alluvium 0.53 0.34 152 4.5 100.8 0.01 0.09 43.8 −4.7
B37 22 Jun 2011 Alluvium 0.20 4.22 2663 17.4 182.1 0.26 11.68 37.4 −3.4
B44 19 Sep 2011 Alluvium 0.32 0.38 183 13.0 145.3 0.09 3.07 49.4 −4.2
B51 8 Jun 2011 Alluvium 8.80 3.71 1711 43.9 699.0 0.32 0.98 42.6 −0.3
B57 19 Sep 2011 Alluvium 2.20 0.8 384 18.9 122.6 0.06 3.01 48.1 −1.2
B74 7 Jun 2011 Alluvium 0.00 0.25 82 46.4 158.8 0.04 2.99 26.3 −2.4
B76 21 Jun 2011 Alluvium 0.00 0.19 83 13.8 157.9 0.04 0.29 30.8 −7.4
B82 15 Jun 2011 Alluvium 0.00 0.44 297 36.4 177.1 0.06 0.89 34.0 −12.0
B83 15 Jun 2011 Alluvium 0.00 0.68 344 3.9 125.2 0.02 4.96 49.8 −2.0
B89 8 Jun 2011 Alluvium 2.10 0.37 203 40.8 173.9 0.03 0.03 31.7 −3.0
B90 14 Jun 2011 Alluvium 0.00 0.83 491 30.5 169.6 0.04 3.68 48.8 −1.2
B91 21 Jun 2011 Alluvium 11.00 0.21 111 27.9 136.3 0.05 0.42 29.7 −3.3
B93 8 Jun 2011 Alluvium 3.70 0.43 266 20.8 131.8 0.02 0.10 35.9 −2.3
B837 21 Jun 2011 Alluvium 0.00 0.25 92 41.4 103.6 0.02 2.78 35.1 3.5
B158 14 Jun 2011 Both Alluvium and Bedrock 0.00 1.15 785 12.3 250.0 0.05 0.17 40.9 −2.3
B92 15 Jun 2011 Both Alluvium and Bedrock 22.00 0.16 40 5.0 133.9 0.02 0.03 44.3 −5.9
B103 15 Jun 2011 Bedrock 0.00 10.3 4415 193.9 679.6 0.30 0.02 29.9 −1.0
B104 19 Sep 2011 Bedrock 0.05 0.12 34 2.5 287.7 0.38 0.38 64.8 −3.3
B16 15 Jun 2011 Bedrock 0.94 0.23 99 14.8 143.5 0.08 0.24 37.9 −1.7
B229 21 Jun 2011 Bedrock 0.00 0.84 190 4.1 279.3 0.46 0.11 42.3 −1.2
B251 16 Jun 2011 Bedrock 0.00 0.34 127 37.7 516.8 0.63 0.42 30.4 −1.8
B256 21 Jun 2011 Bedrock 0.00 0.18 90 2.9 320.3 0.18 0.19 58.8 −8.5
B546 21 Jun 2011 Bedrock 0.00 0.35 104 62.9 158.4 0.03 1.33 29.7 −4.8
CC1 7 Jun 2011 Surface Water 0.32 0.11 49 12.4 86.6 0.05 0.16 15.8 −1.6
CC2 7 Jun 2011 Surface Water 0.32 0.12 59 10.0 110.3 0.20 0.17 17.8 −4.9
CC4 8 Jun 2011 Surface Water 0.14 0.28 71 10.7 133.1 0.32 0.04 19.2 −5.2
CC5 8 Jun 2011 Surface Water 0.27 0.21 107 11.8 140.8 0.34 0.06 20.1 −1.0
CC6 7 Jun 2011 Surface Water 0.13 0.23 113 17.6 144.3 0.25 0.15 20.7 −2.6
KC1 7 Jun 2011 Surface Water 0.00 0.09 103 27.9 79.2 0.03 0.18 18.8 2.0
OCk 8 Jun 2011 Surface Water 0.00 0.13 73 16.4 234.8 0.23 0.02 34.2 −4.8
BR1 8 Jun 2011 Surface Water 0.00 0.45 162 12.6 199.9 0.13 0.19 21.6 2.9

Note: %CBE=percentage charge balance error.
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Table 3. Water isotopic and hydrochemical data for surface and groundwater samples from
the Cressbrook Creek catchment. Saturation indices (SI) for calcite and albite were calculated
using PHREEQC (Parkhurst and Appelo, 1999).

Sampling
Site

Geology Water type δ18O δ2H Deuterium
excess
(d )

Tritium
(TU)

δ13C
(‰)

14C
(pMC)

14C
Uncorrected Age
(yrs BP)

87Sr/86Sr Calcite
(SI)

Albite
(SI)

B157 Alluvium Ca-Na-Mg-Cl −3.6 −23.8 4.82 0.70638 −1.68 1.24
B18 Alluvium Na-Mg-Ca-Cl −3.7 −22.6 6.83 0.50 −4.4 88.02 1025 0.70702 −0.27 −0.47
B21 Alluvium Ca-Mg-Na-HCO3-Cl −2.8 −17.4 4.81 1.17 0.70705 −0.82 −1.48
B33 Alluvium Na-Ca-Mg-Cl-HCO3 −4.0 −24.8 6.91 0.70677 −1.16 −0.59
B36 Alluvium Ca-Na-Mg-Cl-HCO3 −3.8 −23.8 6.49 0.70 95.81 345 0.70580 −1.52 −0.15
B37 Alluvium Ca-Mg-Na-Cl −2.5 −16.1 4.33 1.08 104.22 Modern 0.70628 0.34 1.64
B44 Alluvium Ca-Mg-Na-Cl-HCO3 −4.5 −28.8 7.09 0.88 0.70629 −0.66 −0.98
B51 Alluvium Na-Mg-Cl −3.6 −21.2 7.30 0.13 −4.9 81.12 1680 0.70509 0.07 1.62
B57 Alluvium Ca-Mg-Na-Cl −4.7 −29.4 8.33 1.02 99.32 55 0.70571 −0.62 −0.89
B74 Alluvium Mg-Na-Ca-HCO3-Cl −3.4 −19.6 7.43 0.70664 −1.12 −1.96
B76 Alluvium Na-Mg-Ca-HCO3-Cl −3.0 −18.2 5.70 1.40 0.70667 −1.22 −0.63
B82 Alluvium Ca-Mg-Na-Cl-HCO3 −3.7 −22.1 7.12 1.14 0.70660 −0.83 0.20
B83 Alluvium Ca-Mg-Na-Cl −4.0 −22.9 8.96 1.15 100.38 Modern 0.70607 −1.28 0.42
B89 Alluvium Mg-Ca-Na-Cl-HCO3 −3.2 −22.2 3.57 1.66 0.70705 −1.08 −1.83
B90 Alluvium Na-Mg-Ca-Cl −2.1 −14.6 2.49 1.23 0.70631 −0.88 −0.73
B91 Alluvium Na-Mg-Ca-Cl-HCO3 −3.3 −21.2 5.61 0.70687 −1.07 −1.72
B93 Alluvium Mg-Ca-Na-Cl-HCO3 −4.2 −25.2 8.24 0.70687 −1.21 0.69
B837 Alluvium Mg-Ca-Na-Cl-HCO3 −3.7 −21.1 8.44 1.46 0.70688 −1.14 −1.76
B158 Both Alluvium

and Bedrock
Na-Ca-Mg-Cl −3.4 −22.0 5.51 0.70617 −0.72 0.90

B92 Both Alluvium
and Bedrock

Na-Ca-Mg-Fe-HCO3-Cl −2.1 −15.1 2.00 0.70573 −1.67 −1.55

B103 Bedrock Na-Mg-Ca-Cl −3.4 −22.2 4.66 0.70555 0.18 1.61
B104 Bedrock Ca-Na-Mg-HCO3 −5.4 −31.8 11.10 0.71186 −0.06 −0.66
B16 Bedrock Ca-Mg-Na-Cl-HCO3 −2.4 −15.9 3.30 0.70615 −0.81 −0.01
B229 Bedrock Na-Ca-Cl-HCO3 −4.1 −25.5 7.52 0.70422 0.08 0.75
B251 Bedrock Ca-Mg-Na-HCO3-Cl −2.0 −14.2 1.94 0.70781 0.47 0.19
B256 Bedrock Na-Ca-Mg-HCO3-Cl −4.1 −24.8 7.95 0.70582 −0.61 1.17
B546 Bedrock Ca-Na-Mg-Cl-HCO3 −3.5 −19.8 8.16 0.70609 −1.21 −0.58
CC1 Surface Water Mg-Na-Ca-HCO3-Cl −3.9 −25.2 6.10 1.60 0.70756 −1.37 −2.41
CC2 Surface Water Mg-Na-Ca-HCO3-Cl −3.8 −24.7 5.38 −0.70 −2.21
CC4 Surface Water Mg-Na-Ca-HCO3-Cl −3.8 −24.9 5.60 −0.44 −2.03
CC5 Surface Water Mg-Ca-Na-Cl-HCO3 −3.6 −23.8 5.27 −0.28 −1.90
CC6 Surface Water Mg-Ca-Na-Cl-HCO3 −3.6 −23.2 5.77 1.44 0.70685 −0.41 −1.82
KC1 Surface Water Mg-Na-Ca-Cl-HCO3 −3.7 −21.8 7.52 0.70774 −1.33 −2.29
OCk Surface Water Ca-Mg-Na-HCO3-Cl −4.3 −24.8 9.20 0.70779 −0.35 −1.33
BR1 Surface Water Mg-Na-Ca-Cl-HCO3 −3.9 −24.6 6.99 0.70596 −0.57 −1.61
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Table 4. Rainfall stable isotopes collected from the Brisbane Airport between June 2010 and
June 2011.

Sample Month δ2H
(‰VSMOW)

δ18O
(‰ VSMOW)

Monthly Precipitation
(mm)

Jun 2010 9.0 −1.49 12.8
Jul 2010 −1.8 −2.58 36.0
Aug 2010 −4.4 −1.90 108.2
Sep 2010 −24.6 −4.44 77.0
Oct 2010 −11.9 −3.45 337.3
Nov 2010 −1.6 −2.14 53.2
Dec 2010 −30.2 −5.34 499.4
Jan 2011 −27.8 −5.13 346.8
Feb 2011 −15.3 −3.22 79.8
Mar 2011 −13.5 −3.58 188.6
Apr 2011 0.1 −2.62 94.8
Jun 2011 −2.8 −2.12 7.4
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Table 5. Main features of the five hydrochemical facies (median values).

Hydrochemical facies pH SC
(µScm−1)

Eh SiO2

(mgL−1)
NO3-N
(mgL−1)

3H
(TU)

1 7.2 522 113 43 0.15 N/A
2 7.0 497 38 26 0.17 1.42
3 6.5 708 35 35 0.18 1.14
4 6.6 1337 −40 43 4.0 1.08
5 6.5 4140 −55 41 0.19 0.50
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Fig. 1. Cressbrook Creek catchment in southeast Queensland, located approximately 80 km
northwest of Brisbane and within the upper Brisbane River catchment.
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Fig. 2. Geology, topography and surface drainages of the Cressbrook Creek catchment (viewed
from the east).
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Fig. 4. Annual rainfall (BOM, 2012) for the Cressbrook Creek catchment and annual stream
discharge at CC3 (Stream gauge 143921A; DNRM, 2012). Also shown is time of sampling.
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Fig. 10. Conceptual model of recharge processes in the: (a) upper part of catchment during wet
conditions; (b) upper part of catchment during drought conditions; (c) lower part of catchment
during wet conditions; and (d) lower part of catchment during drought conditions.
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